

Государственное профессиональное образовательное учреждение Ярославской области Ярославский градостроительный колледж

СОГЛАСОВАНО: учебно-методической комиссией ДТ Кванториум Протокол № 18 от «18 » што 2023 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Робототехника в Lego»

Введено в действие с 14 августа 2023г.

Номер экземпляра:	Возраст обучающихся: 7 - 9 лет	
	Срок реализации: 30 недель	
	Направленность: техническая	
	Объем часов: 60 часов	

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «РОБОТОТЕХНИКА В LEGO»

Организация — разработчик: ГПОУ ЯО Ярославский градостроительный колледж структурное подразделение детский технопарк «Кванториум».

Авторы разработки:

Дунаев Евгений Иванович - педагог дополнительного образования,

Протопопова Людмила Андреевна - педагог дополнительного образования,

Исаева Светлана Николаевна – зам.руководителя структурного подразделения - детский технопарк «Кванториум»,

Иванова Елена Валериевна – методист структурного подразделения - детский технопарк «Кванториум»,

Митрошина Юлия Владимировна – методист структурного подразделения - детский технопарк «Кванториум».

Реестр рассылки

№ учтенного экземпляра	Подразделение	Количество копий	
1.	Структурное подразделение детский технопарк	1	
	«Кванториум»		
2.	Педагог дополнительного образования	1	
Размещено	Сайт колледжа/ Дополнительное образование/Кванториум		
	Портал ПФДО		

СОДЕРЖАНИЕ

		Стр.
1.	Пояснительная записка	4
1.1	Нормативно-правовые основы разработки программы	4
1.2	Направленность программы	5
1.3	Цель и задачи программы	5
1.4	Актуальность, новизна и значимость программы	6
1.5	Отличительные особенности программы	6
1.6	Категория обучающихся	7
1.7	Условия и сроки реализации программы	7
1.8	Примерный календарный учебный график	7
1.9	Планируемые результаты программы	7
2.	Учебно-тематический план программы	9
3.	Содержание программы	10
4.	Организационно-педагогические условия реализации программы	13
4.1.	Методическое обеспечение программы	13
4.2.	Материально-техническое обеспечение программы	15
4.3.	Кадровое обеспечение программы	15
4.4.	Организация воспитательной работы и реализация мероприятий	15
5.	Список литературы и иных источников	18
	Приложение 1	20
	Приложение 2	22

1. Пояснительная записка

1.1. Нормативно-правовые основы разработки программы

Настоящая дополнительная общеобразовательная общеразвивающая программа «Промышленная робототехника» (далее - программа) разработана с учетом:

- Федерального закона от 29.12.12 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 31.07.2020 № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся»;
- Приказа Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629 «Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказа Министерства просвещения Российской Федерации от 03.09.2019 № 467
 "Об утверждении Целевой модели развития региональных систем дополнительного образования детей";
- Постановления Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 "Об утверждении санитарных правил СП 2.4. 364820 "Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи";
- Постановление правительства ЯО № 527-п 17.07.2018 (в редакции постановления Правительства области от 15.04.2022 г. № 285-п) Концепция персонифицированного дополнительного образования детей в Ярославской области;
- Приказа департамента образования ЯО от 21.12.2022 № 01-05/1228 «Об утверждении программы персонифицированного финансирования дополнительного образования детей»;
- Устава государственного профессионального образовательного учреждения Ярославской области Ярославского градостроительного колледжа;
- Положения о реализации дополнительных общеобразовательных программ в ГПОУ ЯО Ярославском градостроительном колледже;
- Рабочей программы воспитания детского технопарка «Кванториум» на 2023-2024 учебный год.

1.2. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Робототехника в Lego» относится к программам технической направленности начального уровня.

1.3. Цели и задачи программы

Цель – овладение навыками начального технического конструирования, развитие мелкой моторики, изучение понятия конструкции и ее основных свойств, развитие навыков взаимодействия в группе.

Задачи:

Обучения:

- познакомить с предметными компетенциями в сфере робототехники, в том числе промышленной робототехники;
- познакомить с основами и принципами проектирования и конструирования простейших робототехнических устройств;
- познакомить с историей развития робототехники, сформировать представление об основах робототехники;
- познакомить с алгоритмами блочного программирования промышленных роботов на примере программы Lego WeDo 2.0;

Развития:

- создать условия для развития гибких навыков (soft-skills): коммуникабельность, креативность, инициативности, стремления к самообразованию;
- способствовать развитию навыков использования речевых средств и средств информационных и коммуникационных технологий для презентации своей работы;
 - способствовать развитию критического мышления, креативных способностей;
- способствовать развитию мотивации к самостоятельному обучению и поиску информации;
- стимулировать познавательную активность обучающихся посредством включения их в различные виды конкурсной деятельности.

Воспитания:

• создать условия для развития интереса к техническим наукам и, в частности, к робототехнике;

- способствовать формированию коммуникативной культуры, культуры сотрудничества;
- способствовать формированию готовности обучающихся к участию в соревнованиях, конкурсах и иных мероприятиях различного уровня;
- создать условия для формирования навыков работы с различными источниками информации;
- способствовать развитию чувства патриотизма, уважения к закону и правопорядку, формированию активной гражданской позиции, основанной на традиционных духовных и нравственных ценностях российского общества;
- создать условия для вовлечения в воспитательный процесс участников образовательных отношений на принципах сотрудничества и взаимоуважения.

1.4. Актуальность, новизна и значимость программы

Актуальность программы обусловлена социальным заказом общества на технически грамотных специалистов в области промышленной робототехники, максимальной эффективностью развития технических навыков со школьного возраста. У современных школьников наблюдается повышенный интерес к программированию, робототехнике. Гарантировать максимально эффективное развитие технической грамотности у детей младшего и среднего школьного возраста позволяет передача сложного материала в простой и доступной форме.

Дополнительная общеобразовательная общеразвивающая программа разработана на основе методических рекомендаций по созданию и функционированию детских технопарков «Кванториум». Программа «Робототехника в Lego» поможет овладеть навыками начального технического конструирования, развить мелкую моторику, изучить понятие конструкции и ее основные свойства, развить навыки взаимодействия в группе.

В рамках курса обучающиеся смогут сформировать ключевые аналитические, математические и конструкторские навыки необходимые для дальнейшего саморазвития в сфере промышленной робототехники.

1.5 Отличительные особенности программы

К отличительным особенностям настоящей программы относится пропедевтический характер образовательного процесса, кейсовая система обучения, выявление готовности к компетенциям XXI века, в том числе в сфере робототехники.

1.6 Категория обучающихся

Данная образовательная программа разработана для работы с обучающимися от 7 до 9 лет (1-3 классы). Программа не адаптирована для обучающихся с OB3.

1.7 Условия и сроки реализации программы

К занятиям допускаются дети без специального набора.

Наполняемость группы от 8 до 14 человек.

Форма обучения — очная, очно-заочная с использованием дистанционных технологий, ИКТ.

Режим занятий. При очной форме обучения: 1 раз в неделю по 2 академических часа (по 30-45 минут в зависимости от формы обучения и вида занятий) с 10-минутным перерывом. При использовании очно-заочной формы обучения не менее трети объема аудиторных часов должно быть реализовано в очной форме, остальные - заочно и с применением дистанционных технологий на платформах дистанционного обучения в виде онлайн-конференции или перечня заданий в групповых чатах в социальных сетях.

Объем учебной нагрузки – 60 часов, в неделю – 2 часа. Продолжительность учебного периода – 30 недель.

Занятия проводятся в кабинете Промробо-квантума, оборудованном согласно санитарно-эпидемиологическим требованиям.

Форма занятий - групповая, по подгруппам, индивидуально.

Форма аттестации – промежуточная, с применением различных видов контроля.

1.8. Примерный календарный учебный график

График формируется после утверждения расписания.

1.9. Планируемые результаты и способы определения результативности образовательного процесса

Результатом освоения обучающимися программы являются:

- знание правил техники безопасности при работе с компьютерной техникой;
- знание истории развития робототехники;
- знание основной терминологии в области робототехники (понимание сути терминов «автоматизация», «автоматика», «роботизация»);
 - знание принципов работы различных датчиков, применяемых в робототехнике;

- знание способов применения роботов в общественной жизни;
- знание основ блочного программирования;
- знание основ работы в команде, возможных ролей и инструментов командной работы;
 - умение ставить цели и находить пути их достижения;
 - способность осуществлять контроль и управлять временем;
 - умение решать поставленные задачи и принимать решение.
- владение гибкими навыки (soft-skills): коммуникабельность, креативность, инициативность, стремление к самообразованию;
- развитие воображения и мышления в области информационных технологий и робототехники;
- владение и демонстрирование коммуникативной культуры, культуры сотрудничества, командной работы.

Способы отслеживания результатов освоения программы обучающимися:

- промежуточная аттестация по окончанию модуля;
- контрольные задания по окончанию темы;
- педагогическое наблюдение в ходе занятий;
- участие в соревнованиях, конкурсах различного уровня;
- решение кейсов;
- презентация и защита своей работы;
- опрос.

2. Учебно-тематический план программы «Робототехника в Lego»

№	Раздел и темы	Количество часов			Форма
		Теория	Практика	Всего	контроля
1	Вводное занятия	2		2	Опрос
2	Введение в робототехнику	2	2	4	Контрольное задание
3	Первые шаги. «Майло, научный вездеход».	2	4	6	Контрольное задание
4	Исследовательские кейсы с пошаговыми инструкциями на Lego WeDo 2.0	6	16	22	Контрольное задание
5	Кейсы с открытым решением на Lego WeDo 2.0	2	8	10	Контрольное задание
6	Промышленные кейсы на Lego WeDo 2.0	2	8	10	Контрольное задание
7	Исследовательский мини-проект на Lego WeDo 2.0	2	4	6	Представление проекта
	Итого	18	42	60	

3. Содержание программы

Тема 1. Вводное занятия (2 часа)

Теория

- Знакомство обучающихся друг с другом и с педагогом;
- Проведение инструктажа по технике безопасности;
- Экскурсия по Кванториуму, знакомство с рабочей средой (ПромРобо Квантум);
- Введение в дисциплину, формирование мотивации к её изучению.

Тема 2. Введение в робототехнику (4 часа)

Теория

- Происхождение слова «робот», первое упоминание роботов и зарождение робототехники как науки;
- Знакомство с основными законами робототехники;
- Принцип работы и предназначение первых роботов;
- Распределение обучающихся на команды для дальнейшей работы.

Практика

- Творческое задание: создание (словесного или художественного) прототипа собственного робота с определением его предназначения, функций и примитивного принципа работы;
- Представление прототипа робота группе, обсуждение результатов.

Тема 3. Первые шаги. «Майло, научный вездеход» (6 часов)

Теория

- Знакомство с исследовательским роботом, основы его работы;
- Знакомство со средой программирования Lego WeDo;
- Изучение способов, при помощи которых ученые и инженеры могут использовать вездеходы для исследования мест, недоступных для человека.

Практика

- Обсуждение, как научные вездеходы могут помочь человеку;
- Выполнение проектов Lego WeDo 2.0 начального уровня;
- Знакомство с возможностями использования датчиков, представленных в учебном наборе;

• Сборка и программирование вездехода «Майло» с использованием вспомогательных датчиков. Съемка и презентация видео ролика.

Тема 4. Исследовательские кейсы с пошаговыми инструкциями на Lego WeDo2.0 (22 часа)

Теория

- Сбор и представление информации, связанной со счётом, измерением величин; фиксирование, анализ полученной информации;
- Составление небольших рассказов по серии картинок, материалам собственных игр, занятий, наблюдений. Изучение физических явлений и законов, на основе кейсов, предложенных в программном обеспечении Lego WeDo.

Практика

- Анализ задания, организация рабочего места в зависимости от вида работы, планирование трудового процесса;
- Конструирование и моделирование изделий из различных материалов по образцу, рисунку, простейшему чертежу или эскизу и по заданным условиям (технологическим, функциональным и пр.);
- Конструирование и моделирование на компьютере и в интерактивном конструкторе;
- Подготовка речи выступления и презентации по итогам работы над кейсом;
- Создание презентации.

Тема 5. Кейсы с открытым решением на Lego WeDo 2.0 (10 часов) Теория

- Знакомство с физическими и природными явлениями и законами;
- Алгоритмы проведений исследований, являющихся частью кейсов, предусмотренных программным обеспечением *Lego WeDo*.

Практика

- Конструирование и моделирования изделий из различных материалов по образцу, рисунку, простейшему чертежу или эскизу и по заданным условиям (технологическим, функциональным и пр.);
- Решение исследовательских задач, основанных на различных физических явлениях (речь животных, среда обитания, мосты, сигналы тревоги и др.);

• Подготовка речи выступления и презентации по итогам работы над кейсом. Создание презентации.

Тема 6. Промышленные кейсы на Lego WeDo 2.0 (10 часов)

Теория

- Изучение физических и природных явлений и законов (силы притяжения, трения, инерции);
- Знакомство с промышленными роботами и вариантами их применения;
- Формирование умения работать в командах.

Практика

- Конструирование и моделирование изделий из различных материалов по образцу, рисунку, простейшему чертежу или эскизу и по заданным условиям (технологическим, функциональным и пр.);
- Конструирование и моделирование на компьютере и в интерактивном конструкторе;
- Составление конечной последовательности команд, предметов, чисел, геометрических фигур и др. по правилу. Составление, запись и выполнение простого алгоритма;
- Подготовка презентации «Опыт создания сортировочных линий в промышленности».

Тема 7: Исследовательский Мини-Проект на Lego WeDo 2.0 (6 часов) Теория

- Понятие проектной деятельности. Алгоритм разработки проекта;
- Знакомство с основными социальными, экономическими, промышленными и экологическими проблемами.

Практика

- Разработка проекта, нацеленного на решение одной из проблем современности с использованием набора Lego WeDo 2.0;
- Разработка прототипа робота для проекта;
- Сравнение с прототипом, созданным вначале курса. Анализ результатов;
- Представление проекта. Создание видеоролика и презентации, сопровождающей проект. Подготовка выступления.

4. Организационно-педагогические условия реализации программы

4.1. Методическое обеспечение программы

Основная форма обучения – очная, очно-заочная, с применением дистанционных технологий.

Формы организации занятий: практическая работа, комбинированные, презентация своей работы, соревнования и другие.

Педагогические технологии: игровое обучение, проектное обучение, интерактивное обучение, индивидуальные образовательные траектории.

Используемые методы, приемы: упражнения, практические, поисковые, эвристические, проблемное обучение, техническое задание, самостоятельная работа, диалог и дискуссия; приемы дифференцированного обучения, обеспечивающие обучение каждого обучающегося на уровне его возможностей и способностей.

Для занятий используются дидактические материалы (схемы, шаблоны, эскизы, чертежи, инструкции, лабораторные работы и т.п.).

Оценка образовательных результатов по итогам освоения программы проводится в форме промежуточной аттестации.

Основная форма аттестации – контрольное задание, представление своей финальной работы.

Оценка результатов контрольного задания производится по трём уровням:

- «высокий»: контрольное задание носило творческий, самостоятельный характер и выполнено полностью в планируемые сроки;
- «средний»: учащийся выполнил основные цели, но имеют место недоработки или отклонения по срокам;
- «низкий»: контрольное задание не закончено, большинство целей не достигнуты.

Так же учитывается процентное соотношение детей, реализовавших контрольное задание.

Предполагается два вида оценочных средств: индивидуальный и коллективный. Критерии коллективной оценки:

- реализация и степень завершенности;
- презентация, описание, выступление;
- креативность идеи;
- техническая аккуратность и эстетика;

• работоспособность.

Мониторинг образовательных результатов

Цель мониторинга образовательных результатов – сбор сведений об этапах и уровне достижения обучающимися результатов освоения образовательной программы.

Предмет мониторинга – результаты обучающихся на разных этапах освоения программы.

Система отслеживания, контроля и оценки результатов обучения по данной программе имеет три основных критерия:

- 1. Надежность знаний и умений предполагает усвоение терминологии, способов и типовых решений в сфере квантума.
- 2. Сформированность личностных качеств определяется как совокупность ценностных ориентаций в сфере квантума, отношения к выбранной деятельности, понимания ее значимости в обществе.
- 3. Готовность к продолжению обучения в Кванториуме определяется как осознанный выбор более высокого уровня освоения выбранного вида деятельности, готовность к соревновательной и публичной деятельности.

Критерий «Надежность знаний и умений» предусматривает определение начального уровня знаний, умений и навыков обучающихся, текущий контроль в течение занятий модуля, итоговый контроль. Входной контроль осуществляется на первых занятиях с помощью наблюдения педагога за работой обучающихся. Текущий контроль проводится с помощью различных форм, предусмотренных кейсами или дисциплинами. Цель текущего контроля — определить степень и скорость усвоения каждым ребенком материала и скорректировать программу обучения, если это требуется. Итоговый контроль проводится в конце каждого модуля или дисциплины развивающего блока. Итоговый контроль определяет фактическое состояние уровня знаний, умений, навыков ребенка, степень освоения материала по каждому изученному разделу и всей программе объединения. Формы подведения итогов обучения: контрольные упражнения и тестовые задания; защита индивидуального или группового проекта; выставка работ; соревнования; взаимооценка обучающимися работ друг друга.

Критерий «Сформированность личностных качеств» предполагает выявление и измерение социальных компетенций: осознанности деятельности, ценностного отношения к деятельности, интереса и удовлетворенности познавательных и духовных потребностей.

Критерий «Готовность к продолжению обучения в Кванториуме» предполагает сформированность установки на продолжение образования в Кванториуме по иным модулям разного уровня сложности. Также учитывает готовность ребенка к публичной деятельности и участию в соревнованиях через использование методов социальных проб, наблюдения и опроса.

4.2. Материально-техническое обеспечение программы

В состав перечня оборудования Промробо квантума входит программное обеспечение:

WeDo 2.0, офисное ПО, браузеры (Google Chrome, Mozilla и др.) и другое.

В состав перечня оборудования Промробо-квантума входит оборудование:

Интерактивная панель, мобильное крепление для интерактивного комплекса, интерактивный флипчарт, ноутбук, мышь, струйный принтер, HDMI кабель, смартфон на платформе Android, планшет на платформе Android, Lego WeDo 2.0. Образовательное решение LEGO® MINDSTORMS® Education EV3, Набор для конструирования образовательных моделей промышленных и мобильных роботов и другое.

Для дистанционных занятий: TinkerCAD, Codeacademy и др. онлайн ресурсы.

Помещение для очных занятий – детский технопарк «Кванториум», Промробо квантум.

Другие места проведения занятий – коворкинг, лекторий, актовый зал колледжа.

4.3. Кадровое обеспечение программы

Программу реализуют педагоги по направлению «Промышленная робототехника».

4.4. Организация воспитательной работы и реализация мероприятий

Задачи воспитания определены с учетом интеллектуально-когнитивной, эмоционально-оценочной, деятельностно-практической составляющих развития личности:

- усвоение знаний, норм, духовно-нравственных ценностей, традиций, которые выработало российское общество (социально значимых знаний);
- формирование и развитие позитивных личностных отношений к этим нормам, ценностям, традициям (их освоение, принятие);
- приобретение социально значимых знаний, формирование отношения к традиционным базовым российским ценностям.

КАЛЕНДАРНЫЙ ПЛАН ВОСПИТАТЕЛЬНОЙ РАБОТЫ

№п/п	Наименование мероприятия	Срок	Ответственный
		проведения	
	Профессионально-орие	нтирующее воспит	гание
1.	День инженера	Октябрь	Педагоги-
			организаторы
	Социализация и духовно-	нравственное восп	итание
2.	День рождения	Ноябрь	Педагоги-
	Кванториума		организаторы
3.	Квиз, посвящённый	Апрель	Педагоги-
	дню		организаторы
	космонавтики «Просто		
	Космос»		
	Гражданско-патриотическ	ое и правовое восп	итание
4.	Квиз, посвященный дню	Февраль	Педагоги
	защитника отечества		дополнительного
			образования
5.	Всероссийская акция,	Май	Педагоги-
	посвященная Дню Победы		организаторы,
			педагоги
			дополнительного
			образования
	Эколого-валеологи	ческое воспитание	,
6.	Квиз «Здоровье»	Декабрь	Педагоги
			дополнительного
			образования
7.	Интеллектуальная	Март	Педагоги
	развлекательная игра		дополнительного
	«Роботы в медицине»		образования
	Работа с ро	ц одителями	<u> </u>

ДООП детского технопарқа «Кванториум»

Идентификационный номер – ДСМК 2.10 ДООП 01.02.07 Стр. 17 из 23

8.	Родительское собрание	Сентябрь	Педагоги
			дополнительного
			образования

5. Список литературы и иных источников

Основная литература для педагога:

- 1. Страуструп Бьерн. Программирование. Принципы и практика с использованием C++, М.: Вильямс, 2016. 1328 с.
- 2. Блум Джереми. Изучаем Arduino: инструменты и методы технического волшебства: Пер с англ. СПб.: БХВ-Петербург, 2018. 336 с.: ил.
- 3. Петин В. А. Arduino и Raspberry Pi в проектах Internet of Things.— СПб.: БХВ-Петербург, 2016 320 с.: ил. (Электроника)
- 4. Липпман Стенли, Лайоже Жози, Му Барбара. Язык программирования С++. Базовый курс, 5-е издание, М.: Вильямс, 2017. 1120 с.
- 5. Лутц, М. Программирование на Python. Т. 1 / М. Лутц. М.: Символ, 2016. 992 с.
- 6. Лутц, М. Программирование на Python. Т. 2 / М. Лутц. М.: Символ, 2016. 992 с.
- 7. Азбука электроники. Изучаем Arduino / Ю. Ревич. Москва: Издательство ACT: Кладезь, 2017 224 с. (Электроника для всех).
- 8. Бройнль, Томас Встраиваемые робототехнические системы. Проектирование и применение мобильных роботов со встроенными системами управления / Томас Бройнль. Москва: РГГУ, 2012. 520 с.
- 9. 1. Придумай. Сделай. Сломай. Повтори. Настольная книга примеров и инструментов дизайн-мышления / Мартин Томич, Кара Ригли, Мейделин Бортвик, Насим Ахмадпур, Джессика Фрокли, А. Баки Кокабалли, Клаудия Нуньес-Пачеко, Карла Стрэкер, Лиан Лок; пер. с англ. Елизаветы Пономаревойю М.: Манн, Иванов и Фербер, 2019. 208 с.
- 10. Крейг Д. Введение в робототехнику. Механика и управление // Изд-во «Институт компьютерных исследований», 2013. 564 с.
- 11. Основы теории исполнительных механизмов шагающих роботов / А.К. Ковальчук, Д.Б. Кулаков, Б.Б. Кулаков и др. М.: Изд-во «Рудомино», 2010. —170 с.
- 12. Проектирование систем приводов шагающих роботов с древовидной кинематической системой: учебное пособие для вузов / Л.А. Каргинов, А.К. Ковальчук, Д.Б. Кулаков и др. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. 116 с.
- 13. Робототехнические системы и комплексы / Под ред. И.И. Мачульского М.: Транспорт, 1999. 446 с.

- 14. Справочник по промышленной робототехнике т.1 / Под ред. Ш. Нофа М.: Машиностроение, 1989. 480 с.
- 15. Бешенков, Сергей Александрович. Использование визуального программирования и виртуальной среды при изучении элементов робототехники на уроках технологии и информатики / С.А. Бешенков, М.И. Шутикова, В.Б. Лабутин // Информатика и образование. ИНФО. 2018. № 5. С. 20-22.
- 16. Евдокимова, В.Е. Организация занятий по робототехнике для дошкольников с использованием конструкторов LEGO WeDo / В.Е. Евдокимова, Н.Н. Устинова // Информатика в школе. 2019. № 2. С. 60-64.

Литература для обучающихся:

1. Бельков, Д.М. Задания областного открытого сказочного турнира по робототехнике / Д.М. Бельков, М.Е. Козловских, И.Н. Слинкина //

Информатика в школе. - 2019. - № 3. - С. 32-39.

Интернет-источники:

- 1. Свободно распространяемая программная система для изучения азов программирования дошкольниками и младшими школьниками. Режим доступа: https://piktomir.ru/
- 2. CodeCombat это платформа для учеников, чтобы изучать информатику во время игры. Режим доступа: https://codecombat.com/
- 3. 230 минут TED Talks: лучшие лекции о технологиях, бизнесе и интернете. Режим доступа: https://www.cossa.ru/trends/228574/?utm_campaign=letters&utm_source=sendpulse&utm_medium=email&spush=b2tzc2VsbEB5YWhyby5jb20

Приложение 1

Контрольно-измерительные материалы по теме «Вводный раздел: введение в робототехнику»

- 1. Кто придумал слово РОБОТ?
 - а. Карл Чапек
 - b. Леонардо да Винчи
 - с. Билл Гейтс
 - d. Никола Тесла
- 2. На каких инструментах играли автоматоны Жака де Вакансона?
 - а. Барабаны и скрипка
 - b. Гитара и фортепиано
 - с. Скрипка и флейта
 - d. Тромбон и орган
- 3. В каком рассказе Айзек Азимов описал 3 закона робототехники?
 - а. Лжец
 - b. История робототехники
 - с. Хоровод
 - d. Автостопом по галактике
- 4. Часть тела с которой сравнивают манипулятор
 - а. Голова
 - b. Рука
 - с. Нога
 - d. Запястье
- 5. Как называется человекоподобный робот?
 - а. Андроид
 - b. Киборг
 - с. Механоил
 - d. Автобот

- 6. Сколько существует законов робототехники?
 - a. 1
 - b. 2
 - c. 3
 - d. 4
- 7. Какой датчик позволяет увидеть препятствие?
 - а. Датчик света
 - b. Гироскоп
 - с. Датчик расстояния
 - d. Датчик цвета

Приложение 2

Контрольно-измерительные материалы по теме «Промежуточная аттестация»

- 1. Кто придумал слово РОБОТ?
 - а. Карл Чапек
 - b. Леонардо да Винчи
 - с. Билл Гейтс
 - d. Никола Тесла
- 2. На каких инструментах играли автоматоны Жака де Вакансона?
 - а. Барабаны и скрипка
 - b. Гитара и фортепиано
 - с. Скрипка и флейта
 - d. Тромбон и орган
- 3. Часть тела с которой сравнивают манипулятор
 - а. Голова
 - b. Рука
 - с. Нога
 - d. Запястье
- 4. Какой датчик позволяет увидеть препятствие?
 - а. Датчик света
 - b. Гироскоп
 - с. Датчик расстояния
 - d. Датчик цвета
- 5. Назовите 3 закона робототехники
- 6. Какие принципы сортировки существуют?
- 7. В каких областях промышленности применяют роботов?

ДООП' детского технопарқа «Кванториум»

- 8. В каких сферах общественной жизни применяют роботов?
- 9. Чем роботы отличаются от бытовых приборов?
- 10. Какого робота вы хотели бы создать и почему?